《高级编程语言工程应用》

课程教学大纲

一、 课程基本信息

课程类型	总学时为学时数	☑理论课(含上机、实验学时)			
	总学时为周数	□实习 □课程设计 □毕业设计			毕业设计
课程编码	7215811	总学时	32 学时	学分	2
课程名称	高级编程语言工程应用				
课程英文名称	Engineering Applications of Advanced Programming Language				
适用专业	电子信息工程				
先修课程	C 语言及应用				
开课部门	信息学院电子工程系(电子信息)				

二、 课程性质与目标

该课程是电子信息工程专业的专业基础选修课程。通过本课程的学习,使学生初步掌握 C 语言在嵌入式平台上的应用程序的编程,强化 C 语言编程技能,拓宽学生在控制、计算等工程领域的视野,培养学生的分析问题和解决问题的能力。

(一)课程目标

课程目标 1: 掌握基本的模块互联及接口技术,涵盖核心处理器、输入和输出模块及通信模块等。

课程目标 2: 掌握基本的高级语言编程方法及思路,能够理解面向对象语言的基本使用及硬件驱动函数的调用。

课程目标 3: 具备初步的嵌入式应用的高级语言分析、测试、设计与实现能力,具有初步的电子电气工程师素养。

课程思政目标:培养学生对于软件编程的理解及了解当前软件行业的发展现状,增强学生的钻研精神及针对困难的定位能力及解决能力。

(二) 本课程支撑的毕业要求指标点

本课程支撑的电子信息工程专业毕业要求指标点:

1.5 掌握解决复杂的电路与系统、信号与信息处理工程问题所需的微机、单片机与控制技术基本知识。

5.2 掌握电子信息工程专业主流的测试、仿真和开发软件使用方法。

(三)课程目标对毕业要求指标点的支撑关系

课程目标对电子信息工程专业毕业要求指标点的支撑矩阵

课程目标	毕业要求指标点			
体性 日 你	1. 5	5. 2		
课程目标1	√			
课程目标 2	√			
课程目标 3		√		

三、 课程教学基本内容与要求

课程单元对课程目标的支撑

单元	授课 单元 1	2	实验 单元 1	2	3	4	5
课程 目标	1	2	123	123	123	123	123

第一单元 高级编程语言工程应用导论

1. 教学基本内容

- (1) C语言的工程应用背景
- (2) 嵌入式系统概述
- (3) C语言复习

2. 教学基本要求

了解: 嵌入式 Linux 操作系统。

理解: C语言的工程应用背景。

掌握: C语言的基本知识,包括变量类型、数据结构;判断、跳转等 C语言基本结构;位与、位或等底层操作;并理解指针、内存分配等硬件相关操作。

第二单元 模块介绍及电路基本知识

- 1. 教学基本内容
- (1) 理解常见模块的功能
- (2) 模拟数字电路及通信与接口电路的基本概念及常见电路
- 2. 教学基本要求

了解:模拟/数字电路及常见通信协议的基本概念。

理解:各种模块的功能及选择方法,理解各种电路的特点。

掌握:模拟放大及调理电路、数字电路的基本概念和常见通信接口的基本概念。

四、 实践性教学内容的安排与要求

1、实验教学内容

实验一 单色及彩色 LED 控制实验 4 学时

实验二 舵机及蜂鸣器驱动实验 4 学时

实验三 开关及传感器输入实验 4 学时

实验四 定时与中断实验 4 学时

实验五 人工智能综合实验 12 学时

2、实验教学要求

(1) 单色及彩色 LED 控制实验(验证型)

掌握 IDE 开发环境;掌握单色和彩色 LED 的操作方法,熟悉串口调试的基本方法。

(2) 舵机及蜂鸣器驱动实验(设计型)

熟悉舵机的基本原理及编程方法;掌握蜂鸣器的基本操作方法;掌握蜂鸣器 播放歌曲的方法并完成编程。

(3) 开关及传感器输入实验(设计型)

了解单个开关的基本原理及数字信号的定义;掌握通过开关控制 LED 的编程方法;掌握光敏传感器的基本原理,并实现光控灯(达文西之灯)的编程。

(4) 定时与中断实验(设计型)

理解延时函数的使用方法及定时器的基本原理;理解中断的定义及中断函数的编写方法,实现

(5) 人工智能综合实验(综合型)

了解物联网系统的架构,并完成系统搭建;理解蓝牙及 WIFI 的基本原理,并掌握编程方法;完成平台下语音识别及其他典型应用。

五、 课程各篇章(节)学时分配

学时分配(总学时: 32)

单 元	内容	讲授课时	实验课时	总课时
第一单元	高级编程语言工程应用导论	2		2
第二单元	模块介绍及电路基本知识	2	28	30
	合 计	4	28	32

六、 教学设计与教学组织

本课程采用计算机多媒体投影教学,内容采用 PowerPoint 与板书相结合。

七、 教材与参考资料

教 材: 自编讲义。

参考书: 谭浩强, C程序设计(第二版), 北京:清华大学出版社,1999.12。 华清远见嵌入式培训中心,嵌入式 Linux C语言应用程序设计,北京:人民邮电出版社,2007.8。

八、 课程考核方式与成绩评定标准

总成绩以百分制计算,由平时成绩和实验效果及报告两部分组成。平时成绩占 40%,包括课程表现和实验表现;实验效果及报告占 60%。

九、 大纲制(修)订说明

无。

大纲撰写人: 蔡希昌 大纲审阅人: 冯良 系负责人: 张东彦

学院负责人: 马礼

制订(修订)日期: 202年2月